

Input: M̄anual $\overline{\text { Desire }}$ Create Secure Friday Parrot Crypto
Step1: Amunla Sederi Erceta Ceseru Rfdiya Aprrto Yrcotp

$\left.\begin{array}{l}\text { Manual } \\ \text { Amunla }\end{array}\right] \begin{aligned} & \text { Last } \\ & \text { Lettar } \\ & \text { : Consomat }\end{aligned}$
Step4: $251 \quad \underline{2810} \quad 1917 \quad 2418 \quad 1917 \quad 1614 \quad 4010$
Ranc Desire

(1)
 Sowdseliminate: Repeating letters $\rightarrow N(14)$ \rightarrow D(4) $\rightarrow T(20)$ $\rightarrow F(6)$ $\rightarrow D(4)$ $\rightarrow P(16)$

Q12. Which is the $3^{\text {rd }}$ letter of the $2^{\text {nd }}$ word from the left end in step 1 ?

Q13. How many letters are there between $3^{\text {rd }}$ letter of the $4^{\text {th }}$ word from the right end and $3^{\text {rd }}$ letter of the $2^{\text {nd }}$ word from the right end in step 2 ?

Q14. How many letters are there in total in step 3?
Q15. What is the difference between $4^{\text {th }}$ highest $\& 3^{\text {rd }}$ lowest number in step 4?

Input: Flower Pushpa Dragon Narrow Profit Inside Octave
Step1: Lfwore Supaph Rdgano Anrrwo Rpfoti Sniedi Tcoevan Lepp Update Riont

Step4: 17720183331614279241442
Inprt \Rightarrow Flower 15 Puspa 18 Nauran $2 \overline{4} \frac{x}{5}$ Profit"
(1) Flow 15
(3) Finst Nas FI
(4) Thad Tro rus FI 51518

7 boxes with different number of balls are arranged in three group A, group B and group C. Each box is coded after following certain rule step by step as given below:
After boxes are coded each box are rearranged in ascending order of their box code. First three boxes are from group A, next two boxes are from group B and remaining two boxes are from group C.]

5. What is the difference of box code from group C?
A. 44
B. 68
C. 74
D. 56

$$
(196-128)
$$

E. None of these
6. What is the difference between humber of balls from first box from group A and last box from box B ? (Consider first box from top to bottom)
A. 165
B. 215
C. 175
D. 363

7. What is the value in step III of the second box from group A?
B. 40
C. 54
D. 32
L. Ny

8. What is the sum of value from step IV first box from all the three groups taken together?
A. 218
B. 185

C 196
D. 155
E. None of these

10
18
128

$$
S+p-\frac{1 V}{} 16+36+144
$$

9. What is the product of digits of the number at cell 3×1 in step II?
A. 378
B. 144
C. 324
D. 216
E. None of these

10. Which of the following represents the code at 1×3 in step IV?
A.K1Z
B.L3X
C.Z1M
D.K3Y

E. None of these

11. What is the difference between the numbers formed in the cell 1×2 and 3×1 in step II?
A. 43
B. 72
C. 55
D. 102
E. 56
12. Which of the following cell number represents the code "Z15" in step III?
A. 3×3
B. 1×2
C. 3×1
D. 2×3
E.None of these
Explanation

We have:
Following logic is applied to get step by step final result:
For Step I: from each odd digit ' 1 ' is subtracted and from each even digit ' 1 ' is added within the three-digit number.
For Step II: last two digits of the number formed from step 1 are interchanged with cell number as given below in the form of (Row, Column).
$(1,1)->(3,3)$
$(1,2)->(3,2)$
$(1,3)->(3,1)$
$(2,1)->(2,3)$
For step III: we have two possible conditions:
Case (1): If the first digit from step II is an even digit, then add ' 3 ' and replace that number with a corresponding letter in English alphabetical series, similarly multiply last two digits.
For Example: 687 -> 156
Case (2): If the first digit from step II is odd, then subtract ' 2 ' and replace that number with a corresponding letter in English alphabetical series, similarly multiply last two digits.
For Example: 737 -> E21
For Step IV: We have two possible conditions:
Case (1): If the last digit from step III is an even digit, then subtract ' 2 ' and replace that number with a corresponding letter in English alphabetical series.
For Example:- I56-> I5D
Case (2): If the last digit from step III is odd, then add ' 3 ' and replace that number with a corresponding letter in English alphabetical series.
For Example: E21 -> E2D

13) What is the difference of the square of the digits in step IV of the given input?
A. 12 B. 13 C. 5 D. 16 E. None of these
14) What is different of the square of the numbers obtained in step II of the given input? A. 1296 B. 832 C. 1071 D. 1362 E. 616
15) What is the sum of the digits of the highest number in step III of the given input? A. 5 B. 8 C. 9 D. 12 E. None of these

Input:

\section*{| 9 | 8 | 2 | 4 | 4 | 8 | 3 | 7 | 7 | 5 | 3 | 2 | 3 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Step I: 56
 $5 / 2$
 3/6

Step II:

Step III: $\quad 14$
$3 \mid 5$

Step I: In this step following logic is applied:

Step II: In this step following logic is applied:

Clearly, in step 3, the digits of the result are reversed.
Step IV: In this step following logic is applied:

Q16. If all the letters are replaced with opposite letters (according to the alphabetical order) in (A) then its letters are written in reverse alphabetical order from left to right so find the $4^{\text {th }}$ letter from the left in this new word?
A. T
B. R
C. Z
D. $\quad \mathrm{M}$
E. H

Q17. What will be the sum of squared digits of the alphabetical place values of letters in (B) ?
A. 49
B. 56
C. 62
D. 74
E. 13

Q18. What will be subtraction of (C) and (D) ?
A. 307
B. 180437
C. 20307
D. 1837
E. None of these

Logic:

Step 1 - If number of letters in the word is odd, then reverse the order of the word and if the number of letters in the word is even, then exchange $1^{\text {st }}$ letter with $2^{\text {nd }}$ letter, $3^{\text {rd }}$ letter with $4^{\text {th }}$ letter and so on. For number add the alphabetical place value of $1^{\text {st }}$ and last letter if number of letter is even and subtract the alphabetical place value of $1^{\text {st }}$ and last letter if number of letter is odd.
Step $\mathbf{2}$ - Reverse of highest and lowest letter is written and for number add sum of the digits and product of the digits of the number.
Step 3 - Add all the place values of the $1^{\text {st }}$ letter then add all the place values of the $2^{\text {nd }}$ letter and add all the numbers and write it in this order.
Step 4 - Write product of $1^{\text {st }}$ and last digit, $2^{\text {nd }}$ and $2^{\text {nd }}$ last digit and so on.

